
research note
Applied Theoretical & Computational Physics Div.

X-TM:Transport Methods Group

To/MS: Distribution
From/MS: Todd Urbatsch, XTM MS D409

Tom Evans, XTM MS D409
Phone/FAX: (505)667–3513/(505)665–3677

Symbol: XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)
Date: June 28, 1999

Subject: Software Testing in Milagro, Draco, and the Jayenne Project (Revised)

Executive Summary

Milagro is an Implicit Monte Carlo (IMC) code for XY Z, thermal radiative transfer. Draco is a library
of components reused in various transport applications. Jayenne is the umbrella project encompassing
our entire set of IMC efforts. To verify and maintain code stability and correctness, we have developed
a three-level regression test program. Level 1 contains incrementally advanced component tests of C++

classes used in Milagro. Level 2 contains test problems that are run at the Milagro code level. Level 3
contains verification problems to test the correctness of the physics output from Milagro. Level 1 and 2
tests are executed nightly. Level 3 tests are executed weekly. All tests are automated under the Draco
and Milagro build systems using python scripts.

1. Revision History

[Revision 1 (October 21, 1999): Contains descriptions of new nightly regression tests problems that test the
user-defined surface source cells capability. Also contains corrections to the descriptions of nightly regression
tests str01 through str06.]

[Revision 2 (November 12, 1999): Contains descriptions of new regression tests for the constant external
material volume source. Also contains an addition of the Marshak-2A problem in fulltp06.]

[Revision 3 (March 17, 2000): Added three new regression tests: one with all surface source, one with all
volume emission, and one with all census. Then, all three are restarted from the first, second, or third cycle
and run out. Filenames are start?? and restart?? (01, 02, 03). They run both serially and in parallel.]

[Revision 4 (July 12, 2000): Added three new sets of parallel regression tests: start/restart?? (04, 05, 06)
that are equivalent to the first three except using a full domain decomposition (DD) topology. Also added
problems “restart07” through “restart12,” which test restarting with alternate topologies (full DD and full
replication).]

[Revision 5 (September, 2000): Added a small discussion on the RZ-Wedge Mesh regression tests, and added
tables describing the tests.]

[Revision 6 (5 April 2001): Added OS Mesh test problems for the modified Marshak-2B problem (specific
heat increased from 0.1 to 1.0): fulltp07 and tp07.]

[Revision 7 (31 July 2001): Added problems inf31–inf34, b start01, b restart01–02, and rzinf15 to test the
new input options for opacity: the “tlinear” (κ1/T ) and the “analytic opacity offsets:”.]

[Revision 8 (12 December 2001): Removed testing of the Milagro–specific opacity and equation-of-state input
because it is now handled with the Common Data Interface (CDI). No more “tlinear,” “tcube,” and “ana-



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–2– June 28, 1999

Level 1:

Level 2:

Level 3:

Level 4:

Level 5:

ds++

c4rng

mc

imc

milagro

FIG. 1: Levelized component design of Milagro. Components labeled with boxes are from Draco. Components
in ovals are part of Milagro proper.

lytic opacity offsets:” in the Milagro input. Removed inf18, inf21-24, and inf31-33, and then renumbered.]

[Revision 9 (13 February 2002): Added a suite of tests for Milagro’s multigroup frequency treatment.]

2. Overview

Milagro [1] is an object-oriented code that is built from many component packages. For example, Milagro
utilizes the rng package for random number generation and the c4 package for message passing. A significant
number of these packages reside in the Draco [2] code library. The remaining packages reside within the
Milagro source directory tree. Each package utilized by Milagro is implemented according to the precepts
of levelized design [3] as shown in Fig. 1. Additionally, each component package contains a levelized tree
of classes that make up the component. Thus, one level of regression testing is to incrementally test the
components and classes that are used to build Milagro.

The end product of Milagro is a stand-alone IMC code. This executable is the dynamic interaction of the
components illustrated in Fig. 1. Additionally, the purpose of Milagro is to produce “correct” output from
a given set of initial conditions. Hence, two additional levels of regression testing present themselves. First,
given a set of initial conditions Milagro should produce consistent output from the synthesis of its individual
components. Second, the output should be verifiable. In other words, if components are changed only the
output that depends on those components should change. Also, given a physical description of a problem
Milagro should produce a “correct” solution within the limits imposed by the IMC method.

In summary, we have developed three levels of regression testing in Milagro. The first level checks individual
components for correctness. They should perform their designed services correctly. Because Milagro is a
levelized design, this testing can be built up incrementally [3]. The second level of regression testing checks
the dynamic interaction of all code components at the executable level. Given a set of initial conditions
the code should produce predictable output that is constant over time. When changes are made in certain
components, affected output should be dependent upon the code that has been modified. This level of testing
ensures that unpredicted side-effects do not appear in the code after modifications to certain components.

The final level of regression testing is code verification. In the second level of regression testing, problems
are run to test the stability and interaction of Milagro code components. In this level of regression testing,



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–3– June 28, 1999

TABLE 1: Summary of regression test levels in Milagro.

Regression Schedule Description
Test Level

1 nightly Draco component tests
2 nightly Milagro test problems
3 weekly Milagro verification problems

real physics problems are executed. The output from these executions can be used to verify that the code
continues to produce “correct” physics output with the edition of new features.

The execution schedule for regression tests is dependent upon the level. Draco components are tested nightly
as part of the Draco regression test suite. Milagro level 2 regression tests are performed nightly. On a
sequential schedule, one of the Milagro level 3 verification problems are performed each weekend. The lower
frequency of the level 3 tests is dictated by their lengthy runtimes of up to 48 CPU hours. Table 1 summarizes
the three levels of regression testing in Milagro. The execution of all regression tests has been updated from
the dejagnu [4] testing framework to a much less complicated python script.

The remainder of this note will detail the tests that comprise the three levels of regression testing in Milagro.
Section 3 describes the component tests that form the first level of testing. Section 4 describes the level 2
test problems. Section 5 details the level 3 verification problems. The tests described in this note have been
designed for the following releases of Milagro components:

Milagro 2 2 0
imc 2 2 0b
mc 2 2 0
viz 1 1 0

rng 1 4 0
c4 1 5 0

traits 1 3 0
ds++ 1 4 0

As new revisions of these components are released, the regression test suite will be updated and documented
accordingly.

3. Level 1: Component Tests

Each Milagro component is tested nightly to verify code correctness. In this section we will expound the
tests for the rng, mc, and imc components. The ds++ and c4 components are more general Draco packages
and are more properly described elsewhere. Also, Milagro itself presently does not contain any component
tests. As new components are added to the Milagro source tree, tests will be manufactured. At the time
of this writing, the Milagro source tree consists only of instantiations of Draco components and a C++ main
program.

The purpose of component tests is to verify the correctness of individual classes. In other words, given
correct arguments class members should perform the proper operations. We use Design-By-Contract [5] to
perform part of this task. The other part is performed by component tests. Essentially, these tests instantiate
objects of a certain class and execute the various member functions that the class provides. The results of
the function calls can be compared to a priori known output. When discrepancies occur failure messages
are emitted. These messages are tallied and reported by the component test python script. If no failures are



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–4– June 28, 1999

TABLE 2: Component tests in the Draco rng package.

Problem Description
tstSprng tests the Sprng random number class; tests random number generation, copying, and

spawning

TABLE 3: Component tests in the Draco mc package.

Problem Description
tstCoord tests the Coord sys, XYCoord sys, and XYZCoord sys classes; tests inheritance, position

sampling and dimensionality services
tstOSMesh tests the OS Builder, Layout, and OS Mesh classes; given a shunt interface the builder

creates a mesh of known dimensions and then tests OS Mesh functions including equality,
dimensionality, normal calculations, connectivity, surface calculations, and distance-to-
boundary evaluation

tallied then the script reports that the test passed.

These tests work in conjunction with the level 2 tests. For example, a level 2 test failure could indicate
problems in any number of classes. The hope is that a level 2 failure would correspond to an appropriate
level 1 failure that pinpoints the location of the error.

3.1. Component Tests

Levelized design makes component testing possible and relavent. Any component may assuredly used tested
components in lower levels. Three of the components, or Draco component directories, used by Milagro
are the rng, mc, and imc packages. Tables 2 thru 4 list the component test problems for each of these
components.

3.2. Future Tests

As stated in the previous section, additional component tests are required to gain more complete coverage
of the Draco IMC components. Table 5 provides a list of classes in rng and imc that most urgently require
component tests.

TABLE 4: Component tests in the Draco imc package.

Problem Description
tstOpacity tests the Opacity Builder, Opacity, and Mat State classes; tests building, accessors,

and interactions with the mesh
tstTally tests the Tally class; tests tally accumulation and accessors

tstParticle tests the Particle and Particle Buffer classes; tests particle creation, communication,
storage, equality, and accessors



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–5– June 28, 1999

TABLE 5: Classes in IMC and RNG that require testing or further testing.

Component Class
rng Rnd Control
imc Particle (expanded coverage)

4. Level 2: Test Problems

In this section we identify several key components of a calculation in Milagro. Several simple test problems
are designed to exploit these key components. A python script runs the test suite, compares the test output
to pre-existing benchmark outputs, and reports whether the test passed or failed. The python script can
be run manually or within the general, overriding component/regression python script (the replacement for
dejagnu). The test suite is useful for both regression testing and component testing at a high, compiled-code
level.

4.1. Physical and Parametric Components

Considering an XYZ box as the system, we identify several components that together constitute the capa-
bilities of Milagro. Several variants of the components are designed to give redundantly equivalent results,
either exactly or statistically. For example, the results from an XYZ box should be invariant of the XYZ
octant in which the box resides. The material definitions are no longer tested in Milagro because Milagro
uses the Common Data Interface (CDI) [6, 7] to access opacities and equations-of-state.

1. Geometry

• Cartesian

• RZ

2. Translated Geometry

• Each of the “octants”—8 for XYZ

• origin at center of system

3. Mesh Definition

• along a direction, 1 coarse cell with N fine cells

• along a direction, N coarse cells, each with 1 fine cell

4. Material Definition

• homogeneous

• heterogeneous with like materials

• heterogeneous

5. Frequency Treatment

• gray

• multigroup

6. Streaming

• surface source (SS) straight through

• SS with one opposing reflecting wall



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–6– June 28, 1999

• SS with all walls reflecting

7. Steady-State, Infinite Medium

• all walls reflecting

• one wall replaced by vacuum boundary condition and a SS at system temperature

• two opposing walls replaced with vacuum boundary condition and SS at system temperature

8. Sources

• Surface Source
– six different faces
– temperature, angular distribution
– multiple (opposing only) faces
– user-defined surface source cells

• Material Volume Source
– material and radiation decoupled
– equilibrium diffusion in an infinite, homogeneous medium

• Radiation Source

9. Isotropic Scattering

• c=0

• c=0.5

10. Data and Parameters

• Absorption/Emission Coefficient/Opacity
– analytic
– analytic in tables
– real data in tables

• Specific Heat, cv

– analytic
– analytic in tables
– real data in tables

• Fleck Time-Implicitness, α = 0, 1

• Buffer Size
– b = 1
– b >> 1

• Density
– “normal”
– “large”

• Random Number Seed

11. Parallelism [8]

• full replication

• full domain decomposition



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–7– June 28, 1999

4.2. Test Problems

The test problems are designed to test certain components or certain couplings of components. Unlike
actual component testing, these regression tests test components from a higher, compiled-code level. Beyond
component testing, the regression tests fulfill the traditional purpose of assuring that nothing unexpected
has happened to the code.

4.2.1. Orthogonal Structured Mesh. The base test problem consists of a 4 × 4 × 4 cm block with 4 cells in
each direction. The base material has unit density, a specific heat of 0.1 jks/g/keV, and unit opacity/cross
section. The computational parameters for this base test problem are a timestep of 0.01 shakes, 100 particles,
buffer size of 1, and a random number seed of 9347593. The surface source angular distributions are cosine
(which implies an isotropic intensity) in the infinite medium cases and normal in the streaming cases. The
steady-state, infinite medium problems nominally start out at 1.0 keV with all six walls reflecting. The
streaming problems have zero opacity, which implies no material interaction and no volume emission.

In July, 2000, we noticed an error in the infinite medium problems that had “T-cubed” specific heats,
cv = cvoT

3: inf17 and inf19 (look ahead to Tables 6 and 11). The material energy and temperature
monotonically increased in time to unrealistic levels. We traced the error to two things: the fact that
our material data is time-explicit (evaluated at the beginning of the time step), and the fact that, given a
stochastic temperature T that oscillates around an expected value, the cube, T 3, will be biased to a value
larger than the expected value. To wit, 1.13 is farther away from 1.0 than is 0.93. At the end of a time step,
the material temperature is updated by a quantity equal to the energy deposition divided by T 3. In these
steady-state problems, the energy deposition in a time step should be distributed symmetrically about zero.
Unfortunately, dividing by the T 3 from the beginning of the time step gives more weight to positive energy
depositions. Thus, the material energy and temperature increases each cycle. Besides using time-implicit
cv values, using a shorter timestep is the best brute force fix. Increasing the particles helps reduce the
magnitude of the bias, but does not eliminate it. We will not try to remedy this situation for these three
infinite medium problems; they still serve their purpose for regression testing.

The infinite medium and streaming problem do not, unfortunately, isolate certain source-types of particles.
For instance, they all have census particles. Three more test problems, which are part of the “start” series, are
problems that totally consist of either surface source particles, volume emission particles, or census particles.
These test problems perform restart-dumps, and the corresponding “restart” series of test problems picks
them up from the first or second cycle and runs them to completion. The first set of problems, (re)start01-03,
is run both serially and in parallel (Full Replication (Rep)). The second set, (re)start04-06, is a rehash of
the first set and is run in parallel using a full domain decomposition (DD) topology. The next set of restart
runs, restart07-09, pick up the corresponding restart-dumps from (re)start01-03 (Full Rep) and restart using
Full DD. The next set of restart runs, restart10-12, pick up the restart-dumps from (re)start04-06 (Full
DD) and restart using a Full Rep parallel topology. There are only three different physical problems in the
start/restart set of calculations. The results for each physical problem should only differ by the number of
cycles performed. Thus, problems 01, 04, 07, and 10 are all the same; as are 02, 05, 08, and 11; and as are
03, 06, 09, and 12.

In addition to the degenerate infinite medium, streaming, and restart (with isolated source-types) problems,
we also run a few benchmark problems for a few cycles each. These problems have one-dimensional analytic
solutions to which we compare more fully in the level 3 tests. Besides cursory regression testing, running a
few cycles provides a check for catastrophic errors in these benchmark problems.

The regression test suite is categorized in the following list. Each item references a table that gives more
details about the problem or deviations from its corresponding base problem.

• infinite medium, steady-state; see Table 6 for serial and Table 11 for parallel



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–8– June 28, 1999

TABLE 6: Serial, steady-state, infinite medium problems.

Problem name Details, deviations from base test problem
inf01 Octant 1 (+x,+y,+z)
inf02 Octant 2 (–x,+y,+z)
inf03 Octant 3 (–x,–y,+z)
inf04 Octant 4 (+x,–y,+z)
inf05 Octant 5 (+x,+y,–z)
inf06 Octant 6 (–x,+y,–z)
inf07 Octant 7 (–x,–y,–z)
inf08 Octant 8 (+x,–y,–z)
inf09 Straddling the origin (±x,±y,±z)
inf10 inf09 with 2 coarse cells in each direction, 2 fine cells per coarse cell
inf11 inf10 with 2 materials, zonemap: 1 2 1 2 2 1 2 1
inf12 inf11 with 2 opposing SS(at system temperature) at low x and high x
inf13 inf11 with 2 opposing SS(at system temperature) at low y and high y
inf14 inf11 with 2 opposing SS(at system temperature) at low z and high z
inf15 inf09 with a different random number seed, 1234567
inf16 inf09 with explicit time differencing, α=0
inf17 inf09 with coefficient of 1/T 3, specific heat of 0.1T 3

inf18 inf09 with coefficient of 1.0, specific heat of 0.1
inf19 inf09 with coefficient of 1.0, specific heat of 0.1T 3

inf20 inf09 with a large density, ρ=100 g/cc
inf21 inf12 with entire SS face defined by user (defined surcells)
inf22 inf13 with entire SS face defined by user (defined surcells)
inf23 inf14 with entire SS face defined by user (defined surcells)
inf24 constant external material volume source (10Jks/cc/sh)

in decoupled (σ = 0) one-cell infinite medium.
inf25 constant external material volume source (10Jks/cc/sh)

in equilibrium (σ = 100) one-cell infinite medium.
inf26 inf18 except with κ = 0.1 + 0.9/T .
inf27 inf01 except with coefficients from an ipcress file.

• purely streaming, see Table 7 for serial and Table 11 for parallel

• isolated source-types and restart; see Table 8.

• verification problems run out to a few cycles, see Table 10

The infinite medium problems, inf01 through inf11, give exactly the same solution. Problems inf12 to inf15
and inf17 through inf19 are statistically equivalent to each other and to the first set, inf01 to inf11. Problem
inf16 is different numerically because of its explicit time differencing and problem inf20 is a different problem.
Problems inf24 and inf25 are entirely different problems since they are not steady-state problems and contain
only one cell. Problem inf26 tests an opacity that goes as a + b/T . It is an original problem that exists
merely for regression.

Problems str01 through str06 are the same, except that they have a different orientation. The same statement
applies to the sets, str07 through str12 and str13 through str18.

Tables 8 and 9 describe “start” problems that contain only one of three species of source particles. These
problems are then restarted in varying parallel topologies.



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–9– June 28, 1999

TABLE 7: Serial, streaming problems.

Problem name Details, deviations from base test problem
str01 box around origin, vacuum b.c. on streaming axis, reflecting elsewhere, with SS on low x
str02 box around origin, vacuum b.c. on streaming axis, reflecting elsewhere, with SS on high x
str03 box around origin, vacuum b.c. on streaming axis, reflecting elsewhere, with SS on low y
str04 box around origin, vacuum b.c. on streaming axis, reflecting elsewhere, with SS on high y
str05 box around origin, vacuum b.c. on streaming axis, reflecting elsewhere, with SS on low z
str06 box around origin, vacuum b.c. on streaming axis, reflecting elsewhere, with SS on high z
str07 str01 with vacuum boundary on low x, reflecting elsewhere
str08 str02 with vacuum boundary on high x, reflecting elsewhere
str09 str03 with vacuum boundary on low y, reflecting elsewhere
str10 str04 with vacuum boundary on high y, reflecting elsewhere
str11 str05 with vacuum boundary on low z, reflecting elsewhere
str12 str06 with vacuum boundary on high z, reflecting elsewhere
str13 str01 with all boundaries reflecting
str14 str02 with all boundaries reflecting
str15 str03 with all boundaries reflecting
str16 str04 with all boundaries reflecting
str17 str05 with all boundaries reflecting
str18 str06 with all boundaries reflecting

str19 – str24 str01 – str06 with entire SS face defined by user (defined surcells)
str25 str07 with SS on loz half of lox face
str26 str08 with SS on hiz half of hix face
str27 str09 with SS on center 2×2 block of loy face
str28 str10 with SS on outer ring of hiy face
str29 str11 with SS on diagonals of loz face
str30 str12 with SS defined on every other cell (checkerboard) of hiz face
str31 SS on center 2×2 block of each face

Given that Milagro is reproducible regardless of number of processors, the parallel regression problems give
exactly the same results (within machine error) as their serial counterparts.

4.2.2. RZ-Wedge Mesh. The RZ-Wedge Mesh is the second Mesh Type upon which Milagro and its C++

classes have been templated. Where appropriate, we extend the Orthogonal Structured Mesh tests to the
RZ-Wedge Mesh.

In the time between the development of the Orthogonal Structured Mesh regression tests and the RZ-
Wedge regression tests, we discovered some machine-dependent rounding when there was supposed to be
3.5 particles in a cell. So now, since there are three species of particles in Milagro (volume emission, surface
source, and census), the regression tests call for at least three particles per cell—or more if the energy is
unbalanced between the three species—in order to get a nice, round number of particles per cell. This
approach eliminates some machine-dependencies from testing the underlying physics. One consequence of
this approach is that the comb is not tested in problems with all census particles (start03/06 family). For
this reason, the start03/06 problems in the Orthogonal Structured mesh tests retain their “uneven” numbers
of particles.

The base RZ-Wedge problem has 4 × 4 = 16 cells, 4 cm in each of the radial and axial dimensions, a
wedge angle of 10 degrees, reflecting boundary conditions on all four sides, and material properties from the



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–10– June 28, 1999

TABLE 8: Benchmark “start” problems with particles from only one source-type. Each is restarted as a
“restart” problem from the second, third, or fourth cycle. All problems are run in parallel; the first three
in serial. Restarts can optionally change the parallel topology from Full Replication (Rep) to Full Domain
Decomposition (DD) or vice versa.

Problem name Description
start01/restart01 str01 except all surface source (∆t = 0.1, ∆x = 0.02), full Rep
start02/restart02 inf16 except all volume emission (κ = 104/T 3, α = 0), full Rep
start03/restart03 inf09/str13 except all census (Tmat = κ = 0, ∆t = 0.001,Trad = 1.0), full Rep

start04/restart04 start01/restart01, except full domain decomposition
start05/restart05 start02/restart02, except full domain decomposition
start06/restart06 start03/restart03, except full domain decomposition

restart07 picks up a restart01 dump (full Rep), restarts with full domain decomposition
restart08 picks up a restart02 dump (full Rep), restarts with full domain decomposition
restart09 picks up a restart03 dump (full Rep), restarts with full domain decomposition

restart10 picks up a restart04 dump (full DD), restarts with full replication
restart11 picks up a restart05 dump (full DD), restarts with full replication
restart12 picks up a restart06 dump (full DD), restarts with full replication

TABLE 9: A second set of benchmark “b start” problems with particles from only one source-type. Each is
restarted as a “b restart” problem from the second, third, or fourth cycle.

Problem name Description
b start01 inf16, except κ = 100 + 9900/T

b restart01 restarts start07 from cycle 2 (full rep)
b restart02 restarts start07 from cycle 2 (full DD)

Orthogonal Structured Mesh tests. The base streaming test problem is the same geometry as the infinite
medium test problems, is centered about the z = 0 axis, considers normally incident fluxes, and has all
vacuum boundary conditions. The philosophical interpretation of these tests and comparisons between these
tests are exactly the same as those of the Orthogonal Structured Mesh tests. Thus, we provide no further
discussion. Table 12 shows the infinite medium test problems for the RZ-Wedge Mesh. Table 13 shows the
streaming test problems for the RZ-Wedge Mesh. Table 14 shows the “start” and “restart” test problems
for the RZ-Wedge Mesh. Table 15 lists the truncated versions of the full verification problems, which are
essentially the same as for the orthogonal structured mesh. As with the orthogonal structure mesh case, the
“fullrztp??” problems are meant to be executed less frequently than nightly. Instead, the “rztp??” problems,
which are the same as the “fullrztp??” problems except only out to five cycles, are run nightly.

4.2.3. Multigroup Frequency Treatment. As of February 2002, the IMC and MC components in Draco and
the Milagro code have been updated to use a multigroup frequency treatment in addition to a gray frequency
treatment. Routines for sampling a Planckian and for sampling cumulative distribution function (for emission
spectra) have been added and thoroughly component-tested.

The multigroup Milagro regression tests include all of the “start??/restart??” problems listed in Table 8
and those listed in Table 16. Most of the tests in Table 16 are inherently gray. These problems are run
with the multigroup Milagro executable with a 3-group structure of frequency-independent opacities so as
to replicate the gray tests. The frequency group bounds are 0.0, 0.2, 3.0, and 100.0 keV. All cases will use



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–11– June 28, 1999

TABLE 10: Serial benchmark problems run out a few cycles.

Problem name Description
tp01 Marshak-2b [9] (Surface source impinging cold slab)
tp02 Marshak-1d [10] (Delta function source (in time and space))
tp03 Su/Olson non-equilibrium transport benchmark [11], c = 0
tp04 Su/Olson non-equilibrium transport benchmark [11], c = 0.5
tp05 Olson Wave [12]
tp06 Marshak-2a
tp07 Modified Marshak-2b (specific heat increased from 0.1 to 1.0)

TABLE 11: Parallel test problems, all on two processors.

Problem name Description
p2 inf01 inf09, full replication
p2 inf02 inf09, full domain decomposition, buffer size = 1
p2 inf03 inf09, full domain decomposition, buffer size = 1000
p2 inf04 inf25, full replication
p2 str01 str17, full replication
p2 str02 str18, full replication
p2 str03 str17, full domain decomposition, buffer size = 1
p2 str04 str18, full domain decomposition, buffer size = 1
p2 str05 str31, full domain decomposition, buffer size = 1
p2 str06 str31, full replication, buffer size = 1

input analytic opacities, except for “mginf02” which utilizes an “ipcress” data file whose lower group bound
is 1.0e-10 instead of zero.

The “mginf02” test utilizes an ipcress file called “tcube.ipcress”. It was constructed using tops (version
topsn57) on the SGI machine theta with the following commands:

• source analy

• tlin 500 0.5 1.5

• g 1.0e-10 0.2 3.0 100.0

• sig0 1.0

• stem f

• ropow 0.0

• topow -3.0

• hnupow 0.0

• go

• end

The “go” command in tops prints out an ipcress file called “bliss,” which we rename “tcube.ipcress”. This
data file is intended to replicate the analytic input for test “mginf01.” Given the lack of frequency dependence,
the fine temperature grid, and the logarithmic interpolation, the results from “mginf02” did indeed match
exactly the results from “mginf01.”



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–12– June 28, 1999

TABLE 12: Serial, steady-state, infinite medium problems for the RZWedge Mesh.

Problem name Details, deviations from the base RZWedge test problem
rzinf01 +z regime
rzinf02 -z regime
rzinf03 straddle z=0
rzinf04 rzinf01 with 2 coarse cells in each direction, 2 fine cells per coarse cell
rzinf05 rzinf01 with 2 identical materials
rzinf06 rzinf05 with 2 opposing SS(at system temperature) at low z and high z
rzinf07 rzinf05 with SS(at system temperature) at high r
rzinf08 rzinf06, except straddling z=0
rzinf09 rzinf07, except straddling z=0
rzinf10 rzinf03, with coefficient of 1.0, specific heat of 0.1T 3

rzinf11 rzinf08 with user-defined surface source cells
rzinf12 rzinf09 with user-defined surface source cells
rzinf13 constant external material volume source (10Jks/cc/sh)

in decoupled (σ = 0) one-cell infinite medium.
rzinf14 constant external material volume source (10Jks/cc/sh)

in equilibrium (σ = 100) one-cell infinite medium.
rzinf15 rzinf05, except with σ = 0.1 + 0.9/T .

TABLE 13: Serial, streaming problems for the RZWedge Mesh.

Problem name Details, deviations from the base RZWedge test problem
rzstr01 surface source on high r, all vacuum boundaries
rzstr02 surface source on low z, all vacuum boundaries
rzstr03 surface source on high z, all vacuum boundaries
rzstr04 surface source on low z, reflecting on high z
rzstr05 surface source on high z, reflecting on low z
rzstr06 surface source on high r, all reflecting boundaries
rzstr07 surface source on low z, all reflecting boundaries
rzstr08 surface source on high z, all reflecting boundaries

The verification test problems and their correspondinly simpler regression test problems consist of one
inherently gray problem and two non-grey problems. The mgtp01/mgfulltp01 problem is a Marshak-2A
problem with the same aforementioned 3-group structure as above: 0.0 0.2 3.0 100.0.

The two problem sets, mgtp02/mgfulltp02 and mgtp03/mgfulltp03, compare Milagro’s multigroup results to
analytic multigroup results from Su and Olson’s non-grey benchmarks [13]. Both problems have a picket
fence opacity. Case B has one opacity 10 times the other, and Case B has one opacity 100 times the
other. Theoretically, these analytic problems could be modeled with only two groups. However, since
Milagro assumes an underlying Planckian distribution for its radiation sources and emission, the number
of groups containing the alternating opacities must be large enough so that the Planckian shape between
neighboring groups does not adversely weight one opacity more than the other. For Milagro’s model of
Case B, mgtp02/mgfulltp02, we used 64 groups, uniformly constructed over the range 0.0 to 100.0 keV. For
Milagro’s model of Case C, mgtp03/mgfulltp03, we used 128 groups, uniformly constructed over the range
0.0 to 102.4 keV. These numbers of groups were determined with a convergence study. We also found that to
match Su and Olson’s first early-time edit, we needed to refine the mesh by a factor of 8 and the timesteps
by a factor of 100.



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–13– June 28, 1999

TABLE 14: RZ-Wedge Mesh benchmark “start” problems with particles from only one source-type.

Problem name Description
rzstart01/rzrestart01 rzstr02 except all surface source (∆t = 0.1, ∆x = 0.02)
rzstart02/rzrestart02 similar to inf16 except all volume emission (κ = 104/T 3, α = 0)
rzstart03/rzrestart03 rzinf03/rzstr06 except all census (Tmat = κ = 0, ∆t = 0.001,Trad = 1.0)

TABLE 15: RZ-Wedge versions of the truncated benchmark problems—the full verification problem run out
to five cycles.

Problem name Description
rztp01 Marshak-2b [9] (Surface source impinging cold slab)
rztp02 Marshak-1d [10] (Delta function source (in time and space))
rztp03 Su/Olson non-equilibrium transport benchmark [11], c = 0
rztp04 Su/Olson non-equilibrium transport benchmark [11], c = 0.5
rztp05 Olson Wave [12]
rztp06 Marshak-2a
rztp07 Marshak-2b (cv increased from 0.1 to 1.0)

Currently, the tally has not been upgraded to multigroup. When it is, we will add another test problem
that is an infinite medium, steady-state problem with all reflecting surfaces except for one, which will be a
surface source at the temperature of the medium. For a constant opacity, the escaping spectrum should be
Planckian.

4.3. Regression Test Scripts

A python script, regress milagro.py, runs the regression test. The serial option (python regress milagro.py –
serial) runs the problems in Tables 6, 7, and 10. The parallel option (“python regress milagro.py –nprocs #”,
where # must be 2 unless “–version” is requested) runs the problems in Table 11. The serial calculations
require about 5 minutes on an SGI Octane and the parallel calculations require about 0.5 minutes. The
output goes to problem name.test. The output is compared to problem name.bench. Certain differences,
such as number of particles or zeroth-order energies, indicate failure. Soft checks, such as energy checks or
energy losses, are ensured to be only at machine error.

The benchmark files were verified by hand. Any discrepancies from previous executables from the past year

TABLE 16: Component and verification tests for Milagro with a multigroup frequency treatment.

Problem name Description
mginf01 inf09
mginf02 inf09, except with an ipcress data file
mginf03 inf12
mginf04 inf25
mgstr01 str18

mgtp01/mgfulltp01 Marshak-2A
mgtp02/mgfulltp02 Su/Olson Non-Grey benchmark - Case B [13]
mgtp03/mgfulltp03 Su/Olson Non-Grey benchmark - Case C [13]



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–14– June 28, 1999

were verified to be caused by major changes in the code.

5. Level 3: Verification Problems

There exist a few one-dimensional problems with analytical solutions to which we compare Milagro. These
are the same problems from Table 10, except that they are run out to several shakes. We run these problems
in three-dimensional XYZ geometry, but with transverse directions made infinite with reflecting boundaries.
These full test problems are listed in Table 17, where we also list the names for the RZ-Wedge Mesh tests.

TABLE 17: Benchmark test problems.

Problem name Description
fulltp01/fullrztp01 Marshak-2b [9] (Surface source impinging cold slab)
fulltp02/fullrztp02 Marshak-1d [10] (Delta function source (in time and space))
fulltp03/fullrztp03 Su/Olson non-equilibrium transport benchmark [11], c = 0
fulltp04/fullrztp04 Su/Olson non-equilibrium transport benchmark [11], c = 0.5
fulltp05/fullrztp05 Olson Wave [12]
fulltp06/fullrztp06 Marshak-2a
fulltp07/fullrztp07 Modified Marshak-2b (cv increased from 0.1 to 1.0)

The full Marshak 2B problem (fulltp01) has a density of 3 g/cc, an absorption coefficient of 100 cm2-
keV3/g/T3, a specific heat of 0.1 Jks/g/keV, and a cold temperature of 10−6 keV. The mesh thickness is
0.005 cm, the timestep is a constant 0.001 shakes, and 10,000 cycles were run using 10,000 particles per
timestep.

The full Marshak 1D problem (fulltp02) begins from 0.1 shake with the analytic data as an initial condition.
The cell thickness in the x-direction 0.0025 cm. The material has a density of 3 g/cc, and opacity of 1
cm2-keV3/g/T3, a specific heat of 0.1 Jks/g/keV, and a cold temperature of 10−6 keV. The problem is run
out to 10 shakes with a timestep of 0.01 sh and 10,000 particles.

The Su/Olson benchmarks (fulltp03 and fulltp04) are run out to a third of a shake with a timestep of
1/3 × 10−4 sh. The radiation source existed from x=0 to x=0.5 cm for 1/3 × 10−2 sh. The coefficient is
1.0 cm2/g and the specific heat is 0.05488 Jks/cm3/keV4 T3. The benchmark without scattering (fulltp03)
uses a constant 10,000 particles, whereas the benchmark with 50% scattering begins with 5,000 particles and
ramps up to 50,000 near the end of the calculation.

The Olson Wave (fulltp05) material has a density of 0.38214 g/cc, a coefficient of 2.61684 cm2-keV3/g/T3,
a cold temperature of 0.56234 keV, and a specific heat of 0.14361 Jks/g/keV. This problem is run out to
1/3 sh using a constant timestep of 1/3 ×10−4 sh. The number of particles begins at 1000 and ramps up to
30,000 near the end of the problem.

The Marshak 2A problem (fulltp06) is similar to the Marshak 2B problem except that the absorption
coefficient is order of magnitude smaller: 10 cm2-keV3/g/T3. Other differences are that the timestep is a
constant 0.0001 sh and the problem is run out to 0.1 shakes.

6. Running Milagro Regression Tests

All the regression test levels described in this note can be executed through the Draco and Milagro build
systems. The description of the build system is described elsewhere [14]; however, a few notes about executing
the regression tests are appropriate here.



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–15– June 28, 1999

To automatically execute regression tests through the build system for level 1 and 2 tests, one simply types

gmake check

in the target build directory for Draco and Milagro. This command will build all components, test them
through the general python script (formally dejagnu), and install them in the appropriate places as set
during configuration. For level 3 tests, which are only available in Milagro, one enters

gmake verify

in the Milagro build target directory.

The test can also be executed manually. Manual execution will not activate the general, overriding compo-
nent/regression script (formally dejagnu) to log success and failure reports. To execute component tests
manually the tests must first be built. For example, to execute the imc component tests the following steps
must be performed in the draco/ target build directory:

gmake
cd draco/src/imc/test
gmake
./tstOpacity
./tstTally
./tstParticle

If this were a parallel (MPI) build, the mpirun -np n command would precede the executables.

References

[1] T. M. Evans and T. J. Urbatsch, “MILAGRO: A parallel Implicit Monte Carlo code for 3-d radiative
transfer (U),” in Proceedings of the Nuclear Explosives Code Development Conference, (Las Vegas, NV),
Oct. 1998. LA-UR-98–4722.

[2] T. Evans, “The Draco system for XTM transport code development,” Research Note XTM-RN(U)-
98–046, Los Alamos National Lab., 1998. LA-UR-98–5562.

[3] J. Lakos, Large-Scale C++ Software Design. Reading, MA: Addison-Wesley, Inc., 1996.

[4] R. Savoye, The DejaGnu Testing Framework. Free Software Foundation, 1.3, Jan. 1996.

[5] B. Meyer, Object-Oriented Sofware Construction. Upper Saddle River, NJ: Prentice Hall, second ed.,
1997.

[6] K. G. Thompson, “Gandolf opacity package for draco,” Technical Memo CCS-4:01-05(U), Los Alamos
National Laboratory, May 2001.

[7] K. G. Thompson, “EOSPAC equation of state package for draco,” Technical Memo CCS-4:01-17(U),
Los Alamos National Laboratory, May 2001.

[8] T. J. Urbatsch and T. M. Evans, “Strategy for parallel Implicit Monte Carlo,” Research Note
XTM-RN(U)-98-018, Los Alamos National Laboratory, May 1998. LA-UR–98–2263.

[9] A. G. Petschek, R. E. Williamson, and J. K. Wooten, Jr., “The penetration of radiation with
constant driving temperature,” Technical Report LAMS–2421, Los Alamos Scientific Laboratory, July
1960.

[10] Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic
Phenomena. New York: Academic Press, 1966.

[11] B. Su and G. L. Olson, “An analytical benchmark for non-equilibrium radiative transfer in an isotrop-



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–16– June 28, 1999

ically scattering medium,” Annals of Nuclear Energy, vol. 24, no. 13, pp. 1035–1055, 1997.

[12] G. L. Olson, L. H. Auer, and M. L. Hall, “Diffusion, P1, and other appoximate forms of radiation
transport,” in Proceedings of the Nuclear Explosives Code Development Conference, (Las Vegas, NV),
Oct. 1998. LA-UR-98–5237.

[13] B. Su and G. L. Olson, “Non-grey benchmark results for two temperature non-equilibrium radiative
transfer,” Journal of Quantitative Spectroscopy & Radiative Transfer, vol. 62, pp. 279–302, 1999.

[14] T. Evans and R. Roberts, “The draco build system.” In development, 1999.



To Distribution
XTM-RN(U)-99-018 (Rev. 5)(LA-UR-99-3482)

–17– June 28, 1999

Distribution:

Jim Morel, X–6, MS D409
Gordon Olson, X–6, MS D409
Grady Hughes, X–6, MS D409
William Krauser, X–2, MS B220
Joyce Guzik, X–2, MS B220
Michael Bernardin, X–2, MS B220
Robert Weaver, X–2, MS B220
Bernhard Wilde, X–2, MS B220
Don Shirk, X–8, MS F663
Eldon Linnebur, X–9, MS F663
Lauren Rauber, X–5, F664
Alexandra Heath, X–5, MS F663
Steve White, NIS–3, MS D440
Stephen Lee, NW–SC, MS F652
Mike Clover, X–11, MS F663
Johnny Collins, X–11, MS F663
Mike Gittings, X–11, MS F663
Gary Pfeufer, X–11, MS F663
John Romero, X–11, MS F663
Kim Simmons, X–11, MS F663

Todd Adams, X–6, MS D409
Ray Alcouffe, X–6, MS D409
Marv Alme, X–6, MS D409
Larry Auer, X–6, MS D409
Randy Baker, X–6, MS D409
Tom Evans, X–6, MS D409
Chris Gesh, X–6, MS D409
Mark Gray, X–6, MS D409
Mike Hall, X–6, MS D409
Henry Lichtenstein, X–6, MS D409
John McGhee, X–6, MS D409
Dimitri Mihalas, X–6, MS D409
Shawn Pautz, X–6, MS D409
Randy Roberts, X–6, MS D409
Scott Turner, X–6, MS D409
Todd Urbatsch, X–6, MS D409
Todd Wareing, X–6, MS D409
Jim Warsa, X–6, MS D409
X–6 Files, MS D409
XDO Files, MS B218

TJU:tju


